Impacts of Land Use Changes Over Time on the Arbuckle – Simpson Aquifer in South – Central Oklahoma

Cesalea N. Osborne

Environmental Science

Haskell Indian Nations University

This project was sponsored

by

Haskell Indian Nations University through
NASA CAN NNX14AK04A

Overview

Introduction and Background

- What is an aquifer?
- Where is the Arbuckle-Simpson Aquifer?
- Why is it important?

Sources

• Who's involved?

Methodology & Results

- Spatial data
- Satellite imagery
- Difference maps

Aquifers = Water Storehouses

The Arbuckle-Simpson Aquifer spans five counties in south-central Oklahoma.

The objective of my research is to characterize the change in demand on the Arbuckle – Simpson Aquifer using land use and land cover change over time.

Data Needs & Sources

Spatial Data

- Arbuckle-Simpson Aquifer outcrop –
 Oklahoma Water Resources Board (OWRB)
- State/county boundaries Oklahoma
 Geographic Information Council

Surficial Hydrology Data

• HUC – 8 subbasins – OWRB

Landsat Data

Landsat L8 OLI/TIRS and L4-5 TM
 Explorer – United States Geological Survey
 (USGS)

Methodology

- Researched current water demand on the Arbuckle Simpson Aquifer
- Determined study area based on HUC-8 watersheds (4) that impact the Arbuckle-Simpson Aquifer
- Acquired spatial base data and Landsat images from L8 OLI/TIRS and L4-5 TM sensors for the years of 2015, 2005, 1995, and 1985
- Characterized land use and land cover change over time using an ISO unsupervised classification (15 classes) on Landsat imagery
- Created difference maps for each 10 year time step
- Classified the difference maps into three classes
 - No Change
 - Undetermined change
 - Development
- Analyzed results to determine impacts of demand over time

Results

- ISO unsupervised classification did not accurately distinguish
 - exposed rock/soil from urbanization and development
 - transitions from grasslands to rangeland
- Could not determine if large portions of change were natural change or man-made due to lack of knowledge of the land
- ISO may have worked better using more classes
- Went through final processes to determine difference maps, and to validate that the Landsat based unsupervised classifications where inadequate to map the change in development

Results Continued

Original Classification

- Water
- Forest
- Agriculture
- Grass/Pasture
- Bare rock/soil
- Development

Changed original 6 classes to 4 classes

- Water
- Agriculture/Forest/Pasture
- Exposed rock/soil
- Development

	Water	Agriculture/Forest/Pasture	Exposed Rock/Soil	Development
	1	8	26	54
1	No Change	Undetermined	Undetermined	Undetermined
8	Undetermined	No Change	Development	Undetermined
26	Undetermined	Undetermined	No Change	Development
54	Development	Development	Development	No Change

Difference Map showing areas of development from 1985 to 1995

- Notice large areas showing change based on classification
- Areas were
 misclassified or
 misidentified using
 unsupervised
 classification

Future Recommendations

- Obtain higher spatial/spectral resolution imagery
- Create a supervised classification
 - Possible to use training data collected in field
 - Look at other supervised methods outside of ArcGIS
- Determine other methods to analyze potential detrimental impacts to aquifer and recharge area
 - Meeting with water CPASA, OWRB

Sources

- Blome, C. D., Christenson, S., Faith, J. R., Neel, C. R., Osborn, N. I., Pantea, M. P., & Puckette, J. (2011). *Hydrogeology and Simulation of Groundwater Flow in the Arbuckle-Simpson Aquifer, South-Central Oklahoma*. U.S. Department of the Interior; U.S. Geological Survey.
- Oklahoma Geographic Information Council . (2015). *OKMaps*. Retrieved from http://okmaps.org/ogi/search.aspx
- Oklahoma Water Resources Board . (2015). Arbuckle-Simpson Aquifer Study GIS Datasets. Retrieved from http://www.owrb.ok.gov/maps/pmg/owrbdata_Arbuckle.html
- U.S. Geological Survey . (2015). Retrieved from Earth Explorer : http://earthexplorer.usgs.gov/

